Homework 5 Solutions

Math 131B-2

o (4.11) a) lim,_,olimy o f(z,y) = lim, o ﬁ—z = 1. lim,_,olim, o f(z,y) = lim,_o 7y—%2 =

—1. lim( 40,0 f(,y) does not exist.

b)lim,_,o lim, o f(z,y) = limxﬁox—o2 = 0. limy ,olim, o f(z,y) = limyﬁoy% = 0.
lim ) 0,0) f(2,y) does not exist, because taking the limit of f evaluated on a se-
quence of points on the line x = y gives 1, not 0.

c) lim, o lim, o f(z,y) = lim, 00 = 0. lim, o lim, o f(z,y) = lim, oy = 0. [Use
L’Hopital’s Rule to evaluate the limit of % as x — 0.]

For the limit of the function, observe that for any sequence of points (z,,y,) — 0 and
any € > 0, we can find N such that n > N implies that |z, < 7| and |yn| < €. Then

sin znyn | < |sm €Tn) |

if x,, # 0, since sin is increasing on [0, 7], for n > N we have |
and the limit of the righthand side is € as z, — 0. If z, = 0, for n > N we have
|f(z,y)| = |ly| < e. So the limit of |bm(§—:y")\ as n — oo is less than or equal to e for
any € > 0, hence is 0.

d) The limit lim, o f(z,y) does not exist for y # 0, so the limit lim,_,olim, o f(z, y)
does not exist. Similarly, the limit lim, ,olim, o f(x,y) does not exist. However,
|f(z,y)| < |z +y| for all (x,y), so since lim ) (0,0) |2 + y| = 0, lim(z ) 0,0) = 0.

(4.28) (a) Consider f(z) = sin(mx). (b) No such function, because S is connected and
T is not. (c) No such function, because S is connected and 7" is not. (d) Consider f
such that f(z) = 0 for z € [0,1] and f(z) = 1 for z € [2,3]. (e) No such function,
because S is compact and 7" is not. (f) No such function, because S is compact and
T is not. (g) Consider f(z,y) = (tan(3(x — 3)),tan(3(y — 3))). There are of course
other possible examples for (a) and (f).

(4.37) If S is not connected, then we can write S = AU B such that A and B are
open, nonempty, and disjoint. Since B = A° and A = B¢, A and B are also closed,
and neither can be the empty set or the entire space. Ergo S contains sets which are
both open and closed and not equal to either S or (). Conversely, if S contains a set
A which is open and closed and not S or ), then B = A° is open and nonempty, and
S = AU B. So S is disconnected. The problem statement follows.



e (4.49) Suppose that for some a € S and r > 0, the set {x : d(x,a) < r} is empty. Then
let A= B(x;r) and let B = {x : d(x,a) > r}. Then A is open, and B = S — B(a;r)
is also open. Furthermore, A is nonempty because a € A, and B is nonempty because
S is unbounded. Moreover, AN B = (), and S = AU B. Since S was assumed to be
connected, this is impossible, so we obtain a contradiction.

e (4.52) Let f : S — T be uniformly continuous and S C R™ be bounded. Then S C R"
is closed and bounded, hence compact. Let ¢ = 1, and choose § such that ||z —y|| < ¢
implies that dr(f(x), f(y)) < 1. The collection {B(z;d) : x € S} is an open covering
of S (we don’t need to include balls centered at points of S not in S because there any
point of S’ is at distance less than € for some z in S). Ergo by compactness there is a
finite subcover B(z1;0),--- , B(x,;6) which covers S, and hence also covers S. Since
each z; € S, we conclude that f(S) C U2, f(SNB(z4;0)) € U;2, B(f(z;); 1). This last
set is a finite union of bounded sets, hence certainly bounded: for example, f(.5) is con-
tained in B(f(x1);r) where r = max{dr(f(z1), f(x2))+€,--- ,dr(f(x1), f(x,)) + €, €}

Note: This result is not true for arbitrary metric spaces. Consider the map from the
natural numbers with the discrete metric to the natural numbers with the metric they
inherit as a subset of the real numbers which takes each n to itself. This is trivially
uniformly continuous (take 6 = % for any € > 0) but it maps a bounded set to an
unbounded set.

e (4.54) Let f: S — T be uniformly continuous, and {x,} be a Cauchy sequence in S.
Then given € > 0, there exists 6 > 0 such that for z,y € S, dg(z,y) < ¢ implies that
dr(f(x), f(y)) < e. Moreover, there exists N such that n, m > N implies |z, —2,,| < 0.
Ergo n,m > N implies dr(f (), f(x,)) < €. Since € was arbitrary, {f(x,)} is Cauchy.

e (Question 4)

— Notice f,(0) =0 = f,(1) for all n. For z # 0, 1, an application of L’Hopital’s rule
to fu(x) = = shows that the limit as n — oo is 0.

Since |fn(z)| < \/n;—ﬂ, this sequence converges pointwise to 0 on [0, 1].

— Since f,(7) = (=1)" for all n, we conclude this sequence of functions does not
converge pointwise on [0, 27].

— Since f,(1) = n? for all n, this sequence does not converge pointwise on [0, 1].
e (Question 5)(a) It’s clear that f,(x) converges to f such that f(x) = 0 whenever z # 1

and f(1) = 1. Since each f, is continuous and the limit f is not continuous, we con-
clude the convergence cannot be uniform.

(b)We claim the series converges uniformly to the zero function. Let € > 0. Because g
is continuous and g(1) = 0, there is some (1 —4, 1] on which |g(x)| < e. Therefore since



|fn(z)] < 1 for all n and all z € [0,1], on (1 —4,1], |g(x) - fu(x)] < e. Now, because
g is continuous on [0, 1], g is bounded on [0, 1], so there is M such that |g(x)] < M
on the interval. Choose N such that M - (1 — §)N < €. Then for any z € [0,1 — §], if
n> N, |(g(x) - folz)| < M|2z™| < M|2N| < M(1 —§)N < e. We conclude that for any
x € [0,1] and all n > N, we have |g(x) - f.(z) — 0] < e. Ergo the sequence converges
uniformly to the zero function.

This sort of interval-splitting will become an important tool as we continue to study
convergence of functions.

(Question 6) Suppose f, : S — R is a sequence of functions, f, — f uniformly and
each f, is bounded. Because { f,,} satisfies the Cauchy criterion, for € = 1, there exists
some N such that n,m > N implies that |f,(z) — f(z)] <1 for all z € X. Consider
fn. We know fy is bounded, so there is some M such that |fy(x)| < M for all z € X.
Therefore for m > N, |f.(z)| < |fu(z) — fn(2)| + | fn(2)] < € + M. Now, for k < N,
let My be a bound on |fi(z)|. Then if we let M’ = max{M + €, My, -, My}, we see
that |f,(z)| < M’ for any n € N and = € X.



