Homework 5 Solutions

Math 131B-2

- (4.11) a) $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}}=1$. $\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)=\lim _{y \rightarrow 0} \frac{-y^{2}}{y^{2}}=$ -1 . $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
b) $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=\lim _{x \rightarrow 0} \frac{0}{x^{2}}=0 . \quad \lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)=\lim _{y \rightarrow 0} \frac{0}{y^{2}}=0$. $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist, because taking the limit of f evaluated on a sequence of points on the line $x=y$ gives 1 , not 0 .
c) $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=\lim _{x \rightarrow 0} 0=0 . \lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)=\lim _{y \rightarrow 0} y=0$. [Use L'Hopital's Rule to evaluate the limit of $\frac{\sin (x y)}{x}$ as $x \rightarrow 0$.]

For the limit of the function, observe that for any sequence of points $\left(x_{n}, y_{n}\right) \rightarrow 0$ and any $\epsilon>0$, we can find N such that $n \geq N$ implies that $\left|x_{n}<\frac{\pi}{2}\right|$ and $\left|y_{n}\right|<\epsilon$. Then if $x_{n} \neq 0$, since sin is increasing on [0, $\frac{\pi}{2}$], for $n>N$ we have $\left|\frac{\sin \left(x_{n} y_{n}\right)}{x_{n}}\right|<\left|\frac{\sin \left(\epsilon \cdot x_{n}\right)}{x_{n}}\right|$ and the limit of the righthand side is ϵ as $x_{n} \rightarrow 0$. If $x_{n}=0$, for $n>N$ we have $|f(x, y)|=|y|<\epsilon$. So the limit of $\left|\frac{\sin \left(x_{n} y_{n}\right)}{x_{n}}\right|$ as $n \rightarrow \infty$ is less than or equal to ϵ for any $\epsilon>0$, hence is 0 .
d) The limit $\lim _{x \rightarrow 0} f(x, y)$ does not exist for $y \neq 0$, so the limit $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)$ does not exist. Similarly, the limit $\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)$ does not exist. However, $|f(x, y)| \leq|x+y|$ for all (x, y), so since $\lim _{(x, y) \rightarrow(0,0)}|x+y|=0, \lim _{(x, y) \rightarrow(0,0)}=0$.

- (4.28) (a) Consider $f(x)=\sin (\pi x)$. (b) No such function, because S is connected and T is not. (c) No such function, because S is connected and T is not. (d) Consider f such that $f(x)=0$ for $x \in[0,1]$ and $f(x)=1$ for $x \in[2,3]$. (e) No such function, because S is compact and T is not. (f) No such function, because S is compact and T is not. (g) Consider $f(x, y)=\left(\tan \left(\frac{\pi}{2}\left(x-\frac{1}{2}\right)\right), \tan \left(\frac{\pi}{2}\left(y-\frac{1}{2}\right)\right)\right)$. There are of course other possible examples for (a) and (f).
- (4.37) If S is not connected, then we can write $S=A \cup B$ such that A and B are open, nonempty, and disjoint. Since $B=A^{c}$ and $A=B^{c}, A$ and B are also closed, and neither can be the empty set or the entire space. Ergo S contains sets which are both open and closed and not equal to either S or \emptyset. Conversely, if S contains a set A which is open and closed and not S or \emptyset, then $B=A^{c}$ is open and nonempty, and $S=A \cup B$. So S is disconnected. The problem statement follows.
- (4.49) Suppose that for some $a \in S$ and $r>0$, the set $\{x: d(x, a)<r\}$ is empty. Then let $A=B(x ; r)$ and let $B=\{x: d(x, a)>r\}$. Then A is open, and $B=S-\bar{B}(a ; r)$ is also open. Furthermore, A is nonempty because $a \in A$, and B is nonempty because S is unbounded. Moreover, $A \cap B=\emptyset$, and $S=A \cup B$. Since S was assumed to be connected, this is impossible, so we obtain a contradiction.
- (4.52) Let $f: S \rightarrow T$ be uniformly continuous and $S \subset \mathbb{R}^{n}$ be bounded. Then $\bar{S} \subset \mathbb{R}^{n}$ is closed and bounded, hence compact. Let $\epsilon=1$, and choose δ such that $\|x-y\|<\delta$ implies that $d_{T}(f(x), f(y))<1$. The collection $\{B(x ; \delta): x \in S\}$ is an open covering of \bar{S} (we don't need to include balls centered at points of \bar{S} not in S because there any point of S^{\prime} is at distance less than ϵ for some x in S). Ergo by compactness there is a finite subcover $B\left(x_{1} ; \delta\right), \cdots, B\left(x_{n} ; \delta\right)$ which covers \bar{S}, and hence also covers S. Since each $x_{i} \in S$, we conclude that $f(S) \subset \bigcup_{i=1}^{\infty} f\left(S \cap B\left(x_{i} ; \delta\right)\right) \subset \bigcup_{i=1}^{\infty} B\left(f\left(x_{i}\right) ; 1\right)$. This last set is a finite union of bounded sets, hence certainly bounded: for example, $f(S)$ is contained in $B\left(f\left(x_{1}\right) ; r\right)$ where $r=\max \left\{d_{T}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)+\epsilon, \cdots, d_{T}\left(f\left(x_{1}\right), f\left(x_{n}\right)\right)+\epsilon, \epsilon\right\}$.

Note: This result is not true for arbitrary metric spaces. Consider the map from the natural numbers with the discrete metric to the natural numbers with the metric they inherit as a subset of the real numbers which takes each n to itself. This is trivially uniformly continuous (take $\delta=\frac{1}{2}$ for any $\epsilon>0$) but it maps a bounded set to an unbounded set.

- (4.54) Let $f: S \rightarrow T$ be uniformly continuous, and $\left\{x_{n}\right\}$ be a Cauchy sequence in S. Then given $\epsilon>0$, there exists $\delta>0$ such that for $x, y \in S, d_{S}(x, y)<\delta$ implies that $d_{T}(f(x), f(y))<\epsilon$. Moreover, there exists N such that $n, m>N$ implies $\left|x_{n}-x_{m}\right|<\delta$. Ergo $n, m>N$ implies $d_{T}\left(f\left(x_{m}\right), f\left(x_{n}\right)\right)<\epsilon$. Since ϵ was arbitrary, $\left\{f\left(x_{n}\right)\right\}$ is Cauchy.
- (Question 4)
- Notice $f_{n}(0)=0=f_{n}(1)$ for all n. For $x \neq 0,1$, an application of L'Hopital's rule to $f_{n}(x)=\frac{n x}{(1-x)^{-n}}$ shows that the limit as $n \rightarrow \infty$ is 0 .
- Since $\left|f_{n}(x)\right|<\frac{1}{\sqrt{n+1}}$, this sequence converges pointwise to 0 on $[0,1]$.
- Since $f_{n}(\pi)=(-1)^{n}$ for all n, we conclude this sequence of functions does not converge pointwise on $[0,2 \pi]$.
- Since $f_{n}(1)=n^{2}$ for all n, this sequence does not converge pointwise on $[0,1]$.
- (Question 5)(a) It's clear that $f_{n}(x)$ converges to f such that $f(x)=0$ whenever $x \neq 1$ and $f(1)=1$. Since each f_{n} is continuous and the limit f is not continuous, we conclude the convergence cannot be uniform.
(b)We claim the series converges uniformly to the zero function. Let $\epsilon>0$. Because g is continuous and $g(1)=0$, there is some $(1-\delta, 1]$ on which $|g(x)|<\epsilon$. Therefore since
$\left|f_{n}(x)\right|<1$ for all n and all $x \in[0,1]$, on $(1-\delta, 1],\left|g(x) \cdot f_{n}(x)\right|<\epsilon$. Now, because g is continuous on $[0,1], g$ is bounded on $[0,1]$, so there is M such that $|g(x)| \leq M$ on the interval. Choose N such that $M \cdot(1-\delta)^{N}<\epsilon$. Then for any $x \in[0,1-\delta]$, if $n>N, \mid\left(g(x) \cdot f_{n}(x)|\leq M| x^{n}|\leq M| x^{N} \mid \leq M(1-\delta)^{N}<\epsilon\right.$. We conclude that for any $x \in[0,1]$ and all $n>N$, we have $\left|g(x) \cdot f_{n}(x)-0\right|<\epsilon$. Ergo the sequence converges uniformly to the zero function.

This sort of interval-splitting will become an important tool as we continue to study convergence of functions.

- (Question 6) Suppose $f_{n}: S \rightarrow \mathbb{R}$ is a sequence of functions, $f_{n} \rightarrow f$ uniformly and each f_{n} is bounded. Because $\left\{f_{n}\right\}$ satisfies the Cauchy criterion, for $\epsilon=1$, there exists some N such that $n, m \geq N$ implies that $\left|f_{n}(x)-f_{m}(x)\right|<1$ for all $x \in X$. Consider f_{N}. We know f_{N} is bounded, so there is some M such that $\left|f_{N}(x)\right|<M$ for all $x \in X$. Therefore for $m>N,\left|f_{n}(x)\right| \leq\left|f_{n}(x)-f_{N}(x)\right|+\left|f_{N}(x)\right|<\epsilon+M$. Now, for $k<N$, let M_{k} be a bound on $\left|f_{k}(x)\right|$. Then if we let $M^{\prime}=\max \left\{M+\epsilon, M_{1}, \cdots, M_{k}\right\}$, we see that $\left|f_{n}(x)\right|<M^{\prime}$ for any $n \in \mathbb{N}$ and $x \in X$.

