
Homework 5 Solutions

Math 131B-2

• (4.11) a) limx→0 limy→0 f(x, y) = limx→0
x2

x2
= 1. limy→0 limx→0 f(x, y) = limy→0

−y2
y2

=

−1. lim(x,y)→(0,0) f(x, y) does not exist.

b)limx→0 limy→0 f(x, y) = limx→0
0
x2

= 0. limy→0 limx→0 f(x, y) = limy→0
0
y2

= 0.

lim(x,y)→(0,0) f(x, y) does not exist, because taking the limit of f evaluated on a se-
quence of points on the line x = y gives 1, not 0.

c) limx→0 limy→0 f(x, y) = limx→0 0 = 0. limy→0 limx→0 f(x, y) = limy→0 y = 0. [Use

L’Hopital’s Rule to evaluate the limit of sin(xy)
x

as x→ 0.]

For the limit of the function, observe that for any sequence of points (xn, yn)→ 0 and
any ε > 0, we can find N such that n ≥ N implies that |xn < π

2
| and |yn| < ε. Then

if xn 6= 0, since sin is increasing on [0, π
2
], for n > N we have | sin(xnyn)

xn
| < | sin(ε·xn)

xn
|

and the limit of the righthand side is ε as xn → 0. If xn = 0, for n > N we have
|f(x, y)| = |y| < ε. So the limit of | sin(xnyn)

xn
| as n → ∞ is less than or equal to ε for

any ε > 0, hence is 0.

d) The limit limx→0 f(x, y) does not exist for y 6= 0, so the limit limx→0 limy→0 f(x, y)
does not exist. Similarly, the limit limy→0 limx→0 f(x, y) does not exist. However,
|f(x, y)| ≤ |x+ y| for all (x, y), so since lim(x,y)→(0,0) |x+ y| = 0, lim(x,y)→(0,0) = 0.

• (4.28) (a) Consider f(x) = sin(πx). (b) No such function, because S is connected and
T is not. (c) No such function, because S is connected and T is not. (d) Consider f
such that f(x) = 0 for x ∈ [0, 1] and f(x) = 1 for x ∈ [2, 3]. (e) No such function,
because S is compact and T is not. (f) No such function, because S is compact and
T is not. (g) Consider f(x, y) = (tan(π

2
(x − 1

2
)), tan(π

2
(y − 1

2
))). There are of course

other possible examples for (a) and (f).

• (4.37) If S is not connected, then we can write S = A ∪ B such that A and B are
open, nonempty, and disjoint. Since B = Ac and A = Bc, A and B are also closed,
and neither can be the empty set or the entire space. Ergo S contains sets which are
both open and closed and not equal to either S or ∅. Conversely, if S contains a set
A which is open and closed and not S or ∅, then B = Ac is open and nonempty, and
S = A ∪B. So S is disconnected. The problem statement follows.



• (4.49) Suppose that for some a ∈ S and r > 0, the set {x : d(x, a) < r} is empty. Then
let A = B(x; r) and let B = {x : d(x, a) > r}. Then A is open, and B = S − B(a; r)
is also open. Furthermore, A is nonempty because a ∈ A, and B is nonempty because
S is unbounded. Moreover, A ∩ B = ∅, and S = A ∪ B. Since S was assumed to be
connected, this is impossible, so we obtain a contradiction.

• (4.52) Let f : S → T be uniformly continuous and S ⊂ Rn be bounded. Then S ⊂ Rn

is closed and bounded, hence compact. Let ε = 1, and choose δ such that ||x− y|| < δ
implies that dT (f(x), f(y)) < 1. The collection {B(x; δ) : x ∈ S} is an open covering
of S (we don’t need to include balls centered at points of S not in S because there any
point of S ′ is at distance less than ε for some x in S). Ergo by compactness there is a
finite subcover B(x1; δ), · · · , B(xn; δ) which covers S, and hence also covers S. Since
each xi ∈ S, we conclude that f(S) ⊂

⋃∞
i=1 f(S∩B(xi; δ)) ⊂

⋃∞
i=1B(f(xi); 1). This last

set is a finite union of bounded sets, hence certainly bounded: for example, f(S) is con-
tained in B(f(x1); r) where r = max{dT (f(x1), f(x2)) + ε, · · · , dT (f(x1), f(xn)) + ε, ε}.

Note: This result is not true for arbitrary metric spaces. Consider the map from the
natural numbers with the discrete metric to the natural numbers with the metric they
inherit as a subset of the real numbers which takes each n to itself. This is trivially
uniformly continuous (take δ = 1

2
for any ε > 0) but it maps a bounded set to an

unbounded set.

• (4.54) Let f : S → T be uniformly continuous, and {xn} be a Cauchy sequence in S.
Then given ε > 0, there exists δ > 0 such that for x, y ∈ S, dS(x, y) < δ implies that
dT (f(x), f(y)) < ε. Moreover, there exists N such that n,m > N implies |xn−xm| < δ.
Ergo n,m > N implies dT (f(xm), f(xn)) < ε. Since ε was arbitrary, {f(xn)} is Cauchy.

• (Question 4)

– Notice fn(0) = 0 = fn(1) for all n. For x 6= 0, 1, an application of L’Hopital’s rule
to fn(x) = nx

(1−x)−n shows that the limit as n→∞ is 0.

– Since |fn(x)| < 1√
n+1

, this sequence converges pointwise to 0 on [0, 1].

– Since fn(π) = (−1)n for all n, we conclude this sequence of functions does not
converge pointwise on [0, 2π].

– Since fn(1) = n2 for all n, this sequence does not converge pointwise on [0, 1].

• (Question 5)(a) It’s clear that fn(x) converges to f such that f(x) = 0 whenever x 6= 1
and f(1) = 1. Since each fn is continuous and the limit f is not continuous, we con-
clude the convergence cannot be uniform.

(b)We claim the series converges uniformly to the zero function. Let ε > 0. Because g
is continuous and g(1) = 0, there is some (1−δ, 1] on which |g(x)| < ε. Therefore since



|fn(x)| < 1 for all n and all x ∈ [0, 1], on (1 − δ, 1], |g(x) · fn(x)| < ε. Now, because
g is continuous on [0, 1], g is bounded on [0, 1], so there is M such that |g(x)| ≤ M
on the interval. Choose N such that M · (1 − δ)N < ε. Then for any x ∈ [0, 1 − δ], if
n > N , |(g(x) · fn(x)| ≤ M |xn| ≤ M |xN | ≤ M(1− δ)N < ε. We conclude that for any
x ∈ [0, 1] and all n > N , we have |g(x) · fn(x) − 0| < ε. Ergo the sequence converges
uniformly to the zero function.

This sort of interval-splitting will become an important tool as we continue to study
convergence of functions.

• (Question 6) Suppose fn : S → R is a sequence of functions, fn → f uniformly and
each fn is bounded. Because {fn} satisfies the Cauchy criterion, for ε = 1, there exists
some N such that n,m ≥ N implies that |fn(x)− fm(x)| < 1 for all x ∈ X. Consider
fN . We know fN is bounded, so there is some M such that |fN(x)| < M for all x ∈ X.
Therefore for m > N , |fn(x)| ≤ |fn(x) − fN(x)| + |fN(x)| < ε + M . Now, for k < N ,
let Mk be a bound on |fk(x)|. Then if we let M ′ = max{M + ε,M1, · · · ,Mk}, we see
that |fn(x)| < M ′ for any n ∈ N and x ∈ X.


